By Topic

A Near-Infrared-Based Magnetic Induction Tomography Solution to Improve the Image Reconstruction Accuracy in Opaque Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Samir Teniou ; Department of Electrical Engineering,, Petroleum Institute,, Abu Dhabi,, United Arab Emirates ; Mahmoud Meribout ; Khaled Al-Wahedi ; Ahmed Al-Durra
more authors

In this paper, we propose a new magnetic induction tomography (MIT) system which uses, in addition to the set of magnetic coils, some infrared launch-detector fibers surrounding the cross-sectional image plane. The system is used to reconstruct the interior conductivity distribution of the body and to enhance the accuracy of images obtained by a single MIT. A constrained Landweber algorithm is proposed for image reconstruction. It uses both the boundary data obtained from the coils, and the foreground-background fractions at some neighboring elements of the mesh obtained using the infrared fibers. The effectiveness of the proposed method is demonstrated by numerical data generated for some circular phantoms. Comparisons, in terms of several metrics, between the reconstructed images obtained using the new method and a conventional MIT based on Landweber reconstruction clearly show the outperformance of the method.

Published in:

IEEE Transactions on Magnetics  (Volume:49 ,  Issue: 4 )