By Topic

Nanodiamond Vacuum Field Emission Integrated Differential Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shao-Hua Hsu ; Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA ; Weng Poo Kang ; Davidson, J.L. ; Huang, J.H.
more authors

The development of a novel vacuum differential amplifier (diff-amp) array employing vertically configured nanodiamond (ND) vacuum field emission transistors (ND-VFETs) on a single chip is presented. The diff-amp array is composed of a common ND emitter array integrated with partition gates and split anodes. An identical pair of ND-VFETs with well-matched field emission transistor characteristics was fabricated by using a dual-mask well-controlled microfabrication process, involving a mold-transfer self-aligned gate-emitter technique in conjunction with ND deposition into the micropatterned molds in the active layer of a silicon-on-insulator substrate followed by gate partitioning to form diff-amp array. The ND-VFETs show gate-controlled modulation of emission with distinct cutoff, linear, and saturation regions. Signal amplification characteristics of the ND-VFET diff-amp are presented. A large common-mode-rejection ratio (CMRR) of 54.6 dB was measured for the diff-amp. The variation of CMRR performance with transconductance was examined, and the results were found to agree with the equivalent circuit model analysis. The accomplishment of this basic circuit building block, consisting of an integrated diff-amp, demonstrates the feasibility of using vacuum integrated circuits for practical applications, including high-radiation and temperature-tolerant space electronics.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 1 )