By Topic

Second Test Coil for the Development of a Compact 3 T  \hbox {MgB}_{2} Magnet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Mine, S. ; GE Global Res. Center, Niskayuna, NY, USA ; Minfeng Xu ; Buresh, S. ; Stautner, W.
more authors

The authors have reported the results of low n -value from a MgB2 test coil developed a year ago. A second test coil has been developed with wire of different structure and manufacturing process. Although the n-value related voltage of the second test coil was lower than the first test coil at designed current, it still showed low n-value. A third test coil has been wound with reduced mechanical stress. It also showed very similar n-value related voltage and n-value. Investigation of voltage distribution over the coil indicated that magnetic field was the major factor causing degradation of the n-value and resulting in n -value related voltages. Since the n-value related coil voltages were on the order of 0.1 μV/cm, the usual short sample Ic test (1 μV/cm was the definition of Ic ) might not detect the n-value related voltage and might not be able to investigate the cause of low n -value. Therefore, the medium length ( ~ 10 m) samples were tested and they showed the wire's lengthwise nonuniformity both on n-value and Ic, which might be another potential cause of the low n-value of the coil. Along with the electrical investigation, the manufacturing process of the wire was carefully inspected for longitudinal uniformity. Some wire segment samples from the same batch exhibited nonuniformity in the particle size distribution resulting in nonuniform filaments. This might have occurred in the wire for the second and third test coils.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )