By Topic

Generalized Bayesian Information Criterion for Source Enumeration in Array Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhihua Lu ; Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany ; Zoubir, A.M.

We investigate the problem of enumerating source signals impinging on an array of sensors in an information theoretic framework. The conventional Bayesian information criterion (BIC) does not yield satisfactory performance for this problem because it only considers the density of the observations. In order to remedy the limitations of the BIC, we propose a generalized Bayesian information criterion (GBIC) rule by incorporating the density of the sample eigenvalues or corresponding statistics. Such a density contains extra information and complements the density of the observations in constructing the GBIC. As a result, two different expressions for the GBIC are suggested. Simulation results validate the superiority of the proposed GBIC over the conventional BIC in terms of correctly determining the number of sources while their computational costs are comparable.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 6 )