By Topic

Non-Parametric High-Resolution SAR Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Glentis, G.O. ; Dept. of Sci. & Technol. of Telecommun., Univ. of Peloponnese, Tripolis, Greece ; Kexin Zhao ; Jakobsson, A. ; Jian Li

The development of high-resolution two-dimensional spectral estimation techniques is of notable interest in synthetic aperture radar (SAR) imaging. Typically, data-independent techniques are exploited to form the SAR images, although such approaches will suffer from limited resolution and high sidelobe levels. Recent work on data-adaptive approaches have shown that both the iterative adaptive approach (IAA) and the sparse learning via iterative minimization (SLIM) algorithm offer excellent performance with high-resolution and low side lobe levels for both complete and incomplete data sets. Regrettably, both algorithms are computationally intensive if applied directly to the phase history data to form the SAR images. To help alleviate this, efficient implementations have also been proposed. In this paper, we further this work, proposing yet further improved implementation strategies, including approaches using the segmented IAA approach and the approximative quasi-Newton technique. Furthermore, we introduce a combined IAA-MAP algorithm as well as a hybrid IAA- and SLIM-based estimation scheme for SAR imaging. The effectiveness of the SAR imaging algorithms and the computational complexities of their fast implementations are demonstrated using the simulated Slicy data set and the experimentally measured GOTCHA data set.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 7 )