By Topic

Spatial Compressive Sensing for Direction-of-Arrival Estimation With Bias Mitigation Via Expected Likelihood

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. Tom Northardt ; MIKEL Inc., Middletown, RI, USA ; Igal Bilik ; Yuri I. Abramovich

This work addresses the problem of direction-of-arrival (DOA) estimation using spatial compressive sensing (SCS) with bias mitigation via an expected likelihood (EL) approach. Compressive sensing (CS)-based estimation approaches such as SCS suffer from two main bias sources: a) a grid-bias resulting from the discretization of the azimuth bearing space and b) an inherent-bias which is the result of regularized L1 optimization underpinning sparse signal recovery. This work investigates the SCS bias sources and proposes a novel application of the EL approach to mitigate both SCS bias sources to produce two competitive maximum likelihood (ML) surrogate algorithms for DOA estimation. The DOA estimation performance and practical suitability of the proposed approaches are demonstrated via simulation. Simulations demonstrate that SCS with the EL-based bias mitigation is able to provide improved DOA estimation accuracy without the need for intensive regularization parameter tuning.

Published in:

IEEE Transactions on Signal Processing  (Volume:61 ,  Issue: 5 )