Cart (Loading....) | Create Account
Close category search window
 

Fabrication of a single-atom electron source by noble-metal surface diffusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nakagawa, Tatsuhiro ; Faculty of Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan ; Rokuta, Eiji ; Murata, Hidekazu ; Shimoyama, Hiroshi
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4769966 

For application as single-atom emitters, the authors have developed a new method for preparing atomic-scale pyramids with three {211}-facet sides (nanopyramids). In the new method, palladium covers the “backward” area of the tungsten tip, approximately 1 mm from the sharpened end, rather than the end itself. The palladium was deposited via surface diffusion promoted by elevating the temperature. Field ion microscopy exhibited typical signs indicating that, with the added annealing, identical nanopyramids grew spontaneously. The field emission characteristics of these nanopyramids were investigated and compared with those produced by the two established preparation methods. The authors found that field emission patterns for single-atom tips were narrow circles at low extractor voltages and three-pronged stars, indicating the presence of three ridges of the nanopyramid, at high voltages. The patterns are the same for tips prepared by whichever method. As for field emission stability, clear differences were also not seen across the preparation methods, except for a minute difference in fluctuation ratios obtained from time-dependent current data.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:31 ,  Issue: 2 )

Date of Publication:

Mar 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.