By Topic

GPS and Electronic Fence Data Fusion for Positioning within Railway Worksite Scenarios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
João Figueiras ; Telecommun. Res. Center Vienna (ftw.), Vienna, Austria ; Jesper GrønbæK ; Andrea Ceccarelli ; Hans-Peter Schwefel

Context-dependent decisions in safety-critical applications require careful consideration of accuracy and timeliness of the underlying context information. Relevant examples include location-dependent actions in mobile distributed systems. This paper considers localization functions for personalized warning systems for railway workers, where the safety aspects require timely and precise identification whether a worker is located in a dangerous (red) or safe (green) zone within the worksite. The paper proposes and analyzes a data fusion approach based on low-cost GPS receivers integrated on mobile devices, combined with electronic fences strategically placed in the adjacent boundaries between safe and unsafe geographic zones. An approach based on the combination of a Kalman Filter for GPS-based trajectory estimation and a Hidden Markov Model for inclusion of mobility constraints and fusion with information from the electronic fences is developed and analyzed. Different accuracy metrics are proposed and the benefit obtained from the fusion with electronic fences is quantitatively analyzed in the scenarios of a single mobile entity: By having fence information, the correct zone estimation can increase by 30%, while false alarms can be reduced one order of magnitude in the tested scenario.

Published in:

High-Assurance Systems Engineering (HASE), 2012 IEEE 14th International Symposium on

Date of Conference:

25-27 Oct. 2012