By Topic

Constructive Discrepancy Minimization by Walking on the Edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Minimizing the discrepancy of a set system is a fundamental problem in combinatorics. One of the cornerstones in this area is the celebrated six standard deviations result of Spencer (AMS 1985): In any system of n sets in a universe of size n, there always exists a coloring which achieves discrepancy 6√n. The original proof of Spencer was existential in nature, and did not give an efficient algorithm to find such a coloring. Recently, a breakthrough work of Bansal (FOCS 2010) gave an efficient algorithm which finds such a coloring. His algorithm was based on an SDP relaxation of the discrepancy problem and a clever rounding procedure. In this work we give a new randomized algorithm to find a coloring as in Spencer's result based on a restricted random walk we call Edge-Walk. Our algorithm and its analysis use only basic linear algebra and is “truly” constructive in that it does not appeal to the existential arguments, giving a new proof of Spencer's theorem and the partial coloring lemma.

Published in:

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on

Date of Conference:

20-23 Oct. 2012