By Topic

Material Detection Based on GMM-Based Power Density Function Estimation and Fused Image in Dual-Energy X-ray Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pourghassem, H. ; Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran ; Fesharaki, N.J. ; Tahmasebi, A.

Material detection is a vital need in dual-energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on power density function (PDF) estimation of three material categories in dual-energy X-ray images is proposed. In this algorithm, PDF of each material category is estimated from grayscale values of a synthetic image that is called fused image, using Gaussian Mixture Models (GMM). The fused image is obtained from wavelet sub bands of high energy and low energy X-ray images. High and low energy X-ray images enhance using two background removing and denoising stages as a preprocessing procedure. The proposed algorithm is evaluated on real images that have been captured from a dual-energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detecting of metallic, organic and mixed materials with acceptable accuracy.

Published in:

Computational Intelligence and Communication Networks (CICN), 2012 Fourth International Conference on

Date of Conference:

3-5 Nov. 2012