By Topic

EEG Signal Compression Based on Adaptive Arithmetic Coding and First-Order Markov Model for an Ambulatory Monitoring System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nasehi, S. ; Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran ; Pourghassem, H.

Compression of EEG signals have a basic role in the consumption power reduction of an ambulatory EEG system. This paper outlines a scheme for EEG compression based on adaptive model arithmetic coding (AMAC) and First order Markov (FM) model. In this scheme, signals are stored within an L-second buffer and quantized to some levels. Then, the AMAC-FM compression algorithm is applied to encode the symbols sequence for wireless transmission. In order to achieve the optimal entropy, this algorithm changes dynamically probability distribution of symbols based on current encoded symbols between encoder and decoder. Finally, the proposed algorithm is established to compression of Freiburg University epilepsy EEG dataset and compression ratio (CR) is obtained. The results indicate that our algorithm can achieve a high CR in relation to other EEG compression methods such as JPEG2000.

Published in:

Computational Intelligence and Communication Networks (CICN), 2012 Fourth International Conference on

Date of Conference:

3-5 Nov. 2012