By Topic

Negative Selection with High-Dimensional Support for Keystroke Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pisani, P.H. ; Univ. Fed. do ABC (UFABC), Sáo Paulo, Brazil ; Lorena, A.C.

Computing and communication systems have been expanding and bringing a number of advancements to our way of life. However, this technological evolution has also contributed to the rise of the identity theft, mainly due to the advent of the digital identity. An alternative to overcome this problem is by the analysis of the user behavior, known as behavioral intrusion detection. Among the possible aspects to be analysed, this work focuses on the keystroke dynamics, which consists of recognizing users by their typing rhythm. This paper draws a comparison between some novelty detectors applied to keystroke dynamics: immune negative selection algorithms and auto-associative neural networks. Issues regarding the use of negative selection in high dimensional spaces are discussed and an alternative to deal with this problem is presented.

Published in:

Neural Networks (SBRN), 2012 Brazilian Symposium on

Date of Conference:

20-25 Oct. 2012