Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Divergence Analysis with Affine Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sampaio, D. ; Dept. de Cienc. da Comput., Univ. Fed. de Minas Gerais, Belo Horizonte, Brazil ; Martins, R. ; Collange, S. ; Pereira, F.M.Q.

The rising popularity of graphics processing units is bringing renewed interest in code optimization techniques for SIMD processors. Many of these optimizations rely on divergence analyses, which classify variables as uniform, if they have the same value on every thread, or divergent, if they might not. This paper introduces a new kind of divergence analysis, that is able to represent variables as affine functions of thread identifiers. We have implemented this analysis in Ocelot, an open source compiler, and use it to analyze a suite of 177 CUDA kernels from well-known benchmarks. We can mark about one fourth of all program variables as affine functions of thread identifiers. In addition to the novel divergence analysis, we also introduce the notion of a divergence aware register allocator. This allocator uses information from our analysis to either rematerialize affine variables, or to move uniform variables to shared memory. As a testimony of its effectiveness, our divergence aware allocator produces GPU code that is 29.70% faster than the code produced by Ocelot's register allocator. Divergence analysis with affine constraints is publicly available in the Ocelot compiler since June/2012.

Published in:

Computer Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Symposium on

Date of Conference:

24-26 Oct. 2012