By Topic

Detecting Crowdedness Spot in City Transportation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Siyuan Liu ; Heinz Coll., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Yunhuai Liu ; Ni, L. ; Minglu Li
more authors

Crowdedness spot is a crowded area with an abnormal number of objects. Detecting the crowdedness spots of moving vehicles in an urban area is essential to many applications. An intuitive method is to cluster the objects in areas to get the density information. Unfortunately, the data capturing vehicle mobility possesses some new features, such as highly mobile environments, supremely limited size of sample objects, and nonuniform biased samples, and all these features have raised new challenges that make traditional density-based clustering algorithms fail to retrieve the real clustering property of objects, making the results less meaningful. In this paper, we propose a novel nondensity-based approach called mobility-based clustering. The key idea is that sample objects are employed as “sensors” to perceive the vehicle crowdedness in nearby areas using their instant mobility rather than the “object representatives.” As such, the mobility of samples is naturally incorporated. Several key factors beyond the vehicle crowdedness have been identified, and techniques to compensate these effects are accordingly proposed. Furthermore, taking the detected crowdedness spots as a label of the taxi, we can identify one particular taxi to be a crowdedness taxi that crosses a number of different crowdedness spots. We evaluate the performance of our methods and baseline approaches based on real traffic situations (to retrieve the real traffic crowdedness) and real-life data sets. Finally, the interesting findings are provided for further discussions.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:62 ,  Issue: 4 )