By Topic

Correlation as a Heuristic for Accurate and Comprehensible Ant Colony Optimization Based Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdul Rauf Baig ; Imam Muhammad bin Saud Islamic University, Riyadh, Saudi Arabia ; Waseem Shahzad ; Salabat Khan

The primary objective of this research is to propose and investigate a novel ant colony optimization-based classification rule discovery algorithm and its variants. The main feature of this algorithm is a new heuristic function based on the correlation between attributes of a dataset. Several aspects and parameters of the proposed algorithm are investigated by experimentation on a number of benchmark datasets. We study the performance of our proposed approach and compare it with several state-of-the art commonly used classification algorithms. Experimental results indicate that the proposed approach builds more accurate models than the compared algorithms. The high accuracy supplemented by the comprehensibility of the discovered rule sets is the main advantage of this method.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:17 ,  Issue: 5 )