By Topic

Comparison of SRAM Cells for 10-nm SOI FinFETs Under Process and Environmental Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaksic, Z. ; Dept. of Comput. Archit., Univ. Politec. de Catalunya, Barcelona, Spain ; Canal, R.

We explore the 6T and 8T SRAM design spaces through read static noise margin (RSNM), word-line write margin, and leakage for future 10-nm FinFETs. Process variations are based on the ITRS and modeled at device (TCAD) level. We propose a method to incorporate them into a BSIM-CMG model card for time-efficient simulation. We analyze cells with different fin numbers, supply voltages, and temperatures. Results show a 1.8× improvement of RSNM for 8T SRAM cells, the need for stronger pull-downs to secure read stability in 6Ts, and high leakage sensitivity to temperature (10× between 40°C and 100°C). As a specific example, we show how the RSNM of a 6T SRAM cell can be improved by using back-gate biasing techniques for independent-gate FinFETs. We show how WLMN is increased by reducing the strength of pull-up transistors when reverse back-gate biasing is applied on it and how the RSNM can be increased by reducing the strength of access transistor by reverse back-gate biasing of pass-gate transistors. When combining these two techniques, RSNM can be improved up to 25% without compromising cell write ability for any sample. In general, when compared to previous technologies, read stability is untouched, writeability is reduced, and leakage keeps stable.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 1 )