By Topic

AFAM: An Articulated Four Axes Microrobot for Nanoscale Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rakesh Murthy ; Nano and Micro Systems group, Instrument Electronics and Systems Division, Jet Propulsion Laboratory, CA, USA ; Harry E. Stephanou ; Dan O. Popa

This paper presents a microassembled robot called the Articulated Four Axes Microrobot (AFAM). Target application areas include micro and nano part manipulation and probing. The robot consists of a cantilever actuated along four axes: in-place X, Y and YAW ; out-of-plane pitch. The microrobot size spans a total volume of 3 mm × 1.5 × 1 mm (XYZ), and operates within a workspace envelope of 50 μm × 50 μm × 75 μm (XYZ). This is by far the largest operating envelope of any micropositioner with nonplanar dexterity. As a result it can be classified as a new type of three-dimensional microrobot and a candidate for miniaturizing top-down assembly systems to dimensions under 1 cm3. A key feature in this design is a cable-like microwire that transforms in-plane actuator displacement into out-of-plane pitch and yaw motion (via flexure joints). Finite-element analysis simulation followed by microfabrication and assembly processes developed to prototype the designs are described. The microrobot is designed to carry an AFM tip as the end effector and accomplish nanoindentation on a polymer surface. The tip attachment technique and nanoindentation experiments have also been described in this paper. Open loop precision has been characterized using a laser interferometer which measured an average resolution of 50 nm along XYZ, repeatability of 100 nm and accuracy of 500 nm. Experiments to determine microrobot reliability are also presented.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:10 ,  Issue: 2 )