Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

PPI-SVM-Iterative FLDA Approach to Unsupervised Multispectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hsian-Min Chen ; Dept. of Biomed. Eng., Hungkuang Univ., Taichung, Taiwan ; Chinsu Lin ; Shih-Yu Chen ; Chia-Hsien Wen
more authors

This paper presents a new approach to unsupervised classification for multispectral imagery. It first implements the pixel purity index (PPI) which is commonly used in hyperspectral imaging for endmember extraction to find seed samples without prior knowledge, then uses the PPI-found samples as support vectors for a kernel-based support vector machine (SVM) to generate a set of initial training samples. In order to mitigate randomness caused by PPI and sensitivity of support vectors used by SVM it further develops an iterative Fisher's linear discriminate analysis (IFLDA) that performs FLDA classification iteratively to produce a final set of training samples that will be used to perform a follow-up supervised classification. However, when the image is very large, which is usually the case in multispectral imagery, the computational complexity will be very high for PPI to process the entire image. To resolve this issue a Gaussian pyramid image processing is introduced to reduce image size. The experimental results show the proposed approach has great promise in unsupervised multispectral classification.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 4 )