System Maintenance Notice:
Single article purchases and IEEE account management are currently unavailable. We apologize for the inconvenience.
By Topic

System Design and Implementation of UCF-MANUS—An Intelligent Assistive Robotic Manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dae-Jin Kim ; Universal Robot., Inc., Nashville, TN, USA ; Zhao Wang ; Paperno, N. ; Behal, A.

This paper reports on the system design for integrating the various processes needed for end-to-end implementation of a smart assistive robotic manipulator. Specifically, progress is reported in the empowerment of the UCF-MANUS system with a suite of sensory, computational, and multimodal interface capabilities so that its autonomy can be made accessible to users with a wide range of disabilities. Laboratory experiments are reported to demonstrate the ability of the system prototype to successfully and efficiently complete object retrieval tasks. Benchmarking of the impact of the various interface modalities on user performance is performed via empirical studies with healthy subjects operating the robot in a simulated instrumental activities of daily living tasks setup. It is seen through a analysis of the collected quantitative data that the prototype is interface neutral and shows robustness to variations in the tasks and the environment. It is also seen that the prototype autonomous system is quantitatively superior to Cartesian control for all tested tasks under a “number of commands” metric, however, under a “time to task completion” metric, the system is seen to be superior for “hard” tasks but not for “easy” tasks.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:19 ,  Issue: 1 )