Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

How to SAIF-ly Boost Denoising Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Talebi, H. ; Dept. of Electr. Eng., Univ. of California, Santa Cruz, Santa Cruz, CA, USA ; Xiang Zhu ; Milanfar, P.

Spatial domain image filters (e.g., bilateral filter, non-local means, locally adaptive regression kernel) have achieved great success in denoising. Their overall performance, however, has not generally surpassed the leading transform domain-based filters (such as BM3-D). One important reason is that spatial domain filters lack efficiency to adaptively fine tune their denoising strength; something that is relatively easy to do in transform domain method with shrinkage operators. In the pixel domain, the smoothing strength is usually controlled globally by, for example, tuning a regularization parameter. In this paper, we propose spatially adaptive iterative filtering (SAIF) a new strategy to control the denoising strength locally for any spatial domain method. This approach is capable of filtering local image content iteratively using the given base filter, and the type of iteration and the iteration number are automatically optimized with respect to estimated risk (i.e., mean-squared error). In exploiting the estimated local signal-to-noise-ratio, we also present a new risk estimator that is different from the often-employed SURE method, and exceeds its performance in many cases. Experiments illustrate that our strategy can significantly relax the base algorithm's sensitivity to its tuning (smoothing) parameters, and effectively boost the performance of several existing denoising filters to generate state-of-the-art results under both simulated and practical conditions.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 4 )