By Topic

Battery State-of-Charge Estimator Using the MARS Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Juan Carlos Álvarez Antón ; Department of Electrical Engineering , University of Oviedo, 33204 Gijón, Spain ; Paulino José García Nieto ; Francisco Javier de Cos Juez ; Fernando Sánchez Lasheras
more authors

State of charge (SOC) is the equivalent of a fuel gauge for a battery pack in an electric vehicle. Determining the state of charge is thus particularly important for electric vehicles (EVs), hybrid EVs, or portable devices. The aim of this innovative study is to estimate the SOC of a high-capacity lithium iron phosphate (LiFePO4) battery cell from an experimental dataset obtained in the University of Oviedo Battery Laboratory using the multivariate adaptive regression splines (MARS) technique. An accurate predictive model able to forecast the SOC in the short term is obtained and it is a first step using the MARS technique to estimate the SOC of batteries. The agreement of the MARS model with the experimental dataset confirmed the goodness of fit for a limited range of SOC (25-90% SOC) and for a simple dynamic data profile [constant-current (CC) constant-voltage charge-CC discharge].

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 8 )