By Topic

Linear Discriminant Regression Classification for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shih-Ming Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Jar-Ferr Yang

To improve the robustness of the linear regression classification (LRC) algorithm, in this paper, we propose a linear discriminant regression classification (LDRC) algorithm to boost the effectiveness of the LRC for face recognition. We embed the Fisher criterion into the LRC as a novel discriminant regression analysis method. The LDRC attempts to maximize the ratio of the between-class reconstruction error (BCRE) over the within-class reconstruction error (WCRE) to find an optimal projection matrix for the LRC such that the LRC on that subspace can achieve a high discrimination for classification. Then, the projected coefficients are executed by the LRC for face recognition. Extensive experiments carried out on the FERET and AR face databases show that the LDRC performs better than the related regression based algorithms and shows a promising ability for face recognition.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 1 )