By Topic

A Robust Feature Selection Method for Novel Pre-microRNA Identification Using a Combination of Nucleotide-Structure Triplets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stepanowsky, P. ; Dept. of Med., Univ. of California, San Diego, La Jolla, CA, USA ; Jihoon Kim ; Ohno-Machado, L.

MicroRNAs are a class of small non-coding RNAs that play an important role in post-transcriptional regulation of gene products. Identification of novel microRNA is difficult because the validated microRNA set is still small in size and diverse. Existing feature selection methods use different combinations of features related to the biogenesis of microRNAs, but performance evaluations are not comprehensive. We developed a robust feature selection method using a combination of three types of nucleotide-structure triplets, the minimum free energy of the secondary structure of precursor microRNAs and other extracted characteristics. We compared our new combination feature set and three other previously published sets using three different classifiers: logistic regression, support vector machine, and random forest. Our proposed feature set was not only robust across all classifier methods, but also had the highest classification performance, as measured by the area under the ROC curve.

Published in:

Healthcare Informatics, Imaging and Systems Biology (HISB), 2012 IEEE Second International Conference on

Date of Conference:

27-28 Sept. 2012