By Topic

An Effective CU Size Decision Method for HEVC Encoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liquan Shen ; Key Lab. of Adv. Display & Syst. Applic., Shanghai Univ., Shanghai, China ; Zhi Liu ; Xinpeng Zhang ; Wenqiang Zhao
more authors

The emerging high efficiency video coding standard (HEVC) adopts the quadtree-structured coding unit (CU). Each CU allows recursive splitting into four equal sub-CUs. At each depth level (CU size), the test model of HEVC (HM) performs motion estimation (ME) with different sizes including 2N × 2N, 2N × N, N × 2N and N × N. ME process in HM is performed using all the possible depth levels and prediction modes to find the one with the least rate distortion (RD) cost using Lagrange multiplier. This achieves the highest coding efficiency but requires a very high computational complexity. In this paper, we propose a fast CU size decision algorithm for HM. Since the optimal depth level is highly content-dependent, it is not efficient to use all levels. We can determine CU depth range (including the minimum depth level and the maximum depth level) and skip some specific depth levels rarely used in the previous frame and neighboring CUs. Besides, the proposed algorithm also introduces early termination methods based on motion homogeneity checking, RD cost checking and SKIP mode checking to skip ME on unnecessary CU sizes. Experimental results demonstrate that the proposed algorithm can significantly reduce computational complexity while maintaining almost the same RD performance as the original HEVC encoder.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 2 )