Cart (Loading....) | Create Account
Close category search window
 

Multiscale Fractal Analysis of Musical Instrument Signals With Application to Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zlatintsi, A. ; Sch. of ECE, Nat. Tech. Univ. of Athens, Athens, Greece ; Maragos, P.

In this paper, we explore nonlinear methods, inspired by the fractal theory for the analysis of the structure of music signals at multiple time scales, which is of importance both for their modeling and for their automatic computer-based recognition. We propose the multiscale fractal dimension (MFD) profile as a short-time descriptor, useful to quantify the multiscale complexity and fragmentation of the different states of the music waveform. We have experimentally found that this descriptor can discriminate several aspects among different music instruments, which is verified by further analysis on synthesized sinusoidal signals. We compare the descriptiveness of our features against that of Mel frequency cepstral coefficients (MFCCs), using both static and dynamic classifiers such as Gaussian mixture models (GMMs) and hidden Markov models (HMMs). The method and features proposed in this paper appear to be promising for music signal analysis, due to their capability for multiscale analysis of the signals and their applicability in recognition, as they accomplish an error reduction of up to 32%. These results are quite interesting and render the descriptor of direct applicability in large-scale music classification tasks.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.