By Topic

Adversaries and Countermeasures in Privacy-Enhanced Urban Sensing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Cristofaro, E. ; Palo Alto Res. Center, Palo Alto, CA, USA ; Di Pietro, R.

Today's digital society increasingly relies on the interconnection of heterogenous components, encompassing assorted actors, entities, systems, and a variety of (often mobile) computing devices. Revolutionary computing paradigms, such as people-centric urban sensing, have focused on the seamless collection of meaningful data from a large number of devices. The increasing complexity of deployed urban systems and related infrastructures, along with the growing amount of information collected, prompts a number of challenging security and privacy concerns. In this paper, we explore a number of scenarios where nodes of a urban sensing system are subject to individual queries. In this setting, multiple users and organizations (e.g., infrastructure operators) co-exist, but they may not trust each other to the full extent. As a result, we address the problems of protecting: 1) secrecy of reported data, and 2) confidentiality of query interests from the prying eyes of malicious entities. We introduce a realistic network model and study different adversarial models and strategies, distinguishing between resident and nonresident adversaries, considering both randomly distributed and local attackers. For each of them, we propose a distributed privacy-preserving technique and evaluate its effectiveness via analysis and simulation. Our techniques are tunable, trading off the level of privacy assurance with a small overhead increase, and independent from the complexity of the underlying infrastructures. We additionally provide a relevant improvement of data reliability and availability, while only relying on standard symmetric cryptography. The practicality of our proposals is demonstrated both analytically and experimentally.

Published in:

Systems Journal, IEEE  (Volume:7 ,  Issue: 2 )