Cart (Loading....) | Create Account
Close category search window

USAC: A Universal Framework for Random Sample Consensus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Raguram, R. ; Apple, Inc., Cupertino, CA, USA ; Chum, O. ; Pollefeys, M. ; Matas, J.
more authors

A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.