Cart (Loading....) | Create Account
Close category search window

Probing buried organic-organic and metal-organic heterointerfaces by hard x-ray photoelectron spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We present a nondestructive characterization method for buried hetero-interfaces for organic/organic and metal/organic systems using hard x-ray photoelectron spectroscopy (HAXPES) which can probe electronic states at depths deeper than ∼10 nm. A significant interface-derived signal showing a strong chemical interaction is observed for Au deposited onto a C60 film, while there is no such additional feature for copper phthalocyanine deposited onto a C60 film reflecting the weak interaction between the molecules in the latter case. A depth analysis with HAXPES reveals that a Au-C60 intermixed layer with a thickness of 5.1 nm is formed at the interface.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 22 )

Date of Publication:

Nov 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.