By Topic

Numerical Calculation of an Equilibrium Dust Grain Potential in Lunar Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vaverka, J. ; Dept. of Surface & Plasma Sci., Charles Univ., Prague, Czech Republic ; Richterova, I. ; Pavlu, J. ; Safrankova, J.
more authors

The interaction of plasma particles with dust grains leads to their charging. An equilibrium grain potential depends on a plasma environment, as well as on the grain composition, size, shape, and charging history. We present results of calculations of the equilibrium potential of the grain immersed in the plasma simulating a lunar environment. In calculations, we apply a modified model of the secondary electron emission from dust grains, which takes into account grain sizes, their material, and surface roughness. Since this model describes the increase in the secondary emission yield caused by a finite dimension of the dust grain, the calculations provide a realistic estimation of the dust grain charge in the near-Earth environment. We show that the grain surface potential is a descending function of the grain size and this effect can even lead to opposite polarities of small and large grains.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 4 )