By Topic

Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdenour Soualhi ; Laboratoire Ampère, Université de Lyon; CNRS, UMR, Villeurbanne, France ; Guy Clerc ; Hubert Razik

The presence of electrical and mechanical faults in the induction motors (IMs) can be detected by analysis of the stator current spectrum. However, when an IM is fed by a frequency converter, the spectral analysis of stator current signal becomes difficult. For this reason, the monitoring must depend on multiple signatures in order to reduce the effect of harmonic disturbance on the motor-phase current. The aim of this paper is the description of a new approach for fault detection and diagnosis of IMs using signal-based method. It is based on signal processing and an unsupervised classification technique called the artificial ant clustering. The proposed approach is tested on a squirrel-cage IM of 5.5 kW in order to detect broken rotor bars and bearing failure at different load levels. The experimental results prove the efficiency of our approach compared with supervised classification methods in condition monitoring of electrical machines.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:60 ,  Issue: 9 )