By Topic

Effect of GaAs Step Layer Thickness in InGaAs/GaAsP Stepped Quantum-Well Solar Cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu Wen ; Res. Center for Adv. Sci. & Technol., Univ. of Tokyo, Tokyo, Japan ; Yunpeng Wang ; Watanabe, K. ; Sugiyama, M.
more authors

A multiple-stepped quantum-well (MSQW) solar cell, in which GaAs step layers are sandwiched between strain-balanced InGaAs wells and GaAsP barriers, has been proposed, and the improved sub-GaAs-bandgap quantum efficiency has been demonstrated. The optical properties of MSQW solar cells with different GaAs step layer thickness are investigated. The recombination losses inside the QWs have been studied by bias-dependent photoluminescence. The recombination losses decrease with increasing the GaAs step layer thickness. Controlling the GaAs step layer thickness is a feasible way to increase short-circuit current without largely degrading open-circuit voltage.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )