Cart (Loading....) | Create Account
Close category search window
 

Security Analysis of Handover Key Management in 4G LTE/SAE Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan-Kyu Han ; Samsung Electron., Suwon, South Korea ; Hyoung-Kee Choi

The goal of 3GPP Long Term Evolution/System Architecture Evolution (LTE/SAE) is to move mobile cellular wireless technology into its fourth generation. One of the unique challenges of fourth-generation technology is how to close a security gap through which a single compromised or malicious device can jeopardize an entire mobile network because of the open nature of these networks. To meet this challenge, handover key management in the 3GPP LTE/SAE has been designed to revoke any compromised key(s) and as a consequence isolate corrupted network devices. This paper, however, identifies and details the vulnerability of this handover key management to what are called desynchronization attacks; such attacks jeopardize secure communication between users and mobile networks. Although periodic updates of the root key are an integral part of handover key management, our work here emphasizes how essential these updates are to minimizing the effect of desynchronization attacks that, as of now, cannot be effectively prevented. Our main contribution, however, is to explore how network operators can determine for themselves an optimal interval for updates that minimizes the signaling load they impose while protecting the security of user traffic. Our analytical and simulation studies demonstrate the impact of the key update interval on such performance criteria as network topology and user mobility.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.