Cart (Loading....) | Create Account
Close category search window
 

Rough Sets, Kernel Set, and Spatiotemporal Outlier Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Albanese, A. ; Dept. of Appl. Sci., Univ. of Naples Parthenope, Naples, Italy ; Pal, S.K. ; Petrosino, A.

Nowadays, the high availability of data gathered from wireless sensor networks and telecommunication systems has drawn the attention of researchers on the problem of extracting knowledge from spatiotemporal data. Detecting outliers which are grossly different from or inconsistent with the remaining spatiotemporal data set is a major challenge in real-world knowledge discovery and data mining applications. In this paper, we deal with the outlier detection problem in spatiotemporal data and describe a rough set approach that finds the top outliers in an unlabeled spatiotemporal data set. The proposed method, called Rough Outlier Set Extraction (ROSE), relies on a rough set theoretic representation of the outlier set using the rough set approximations, i.e., lower and upper approximations. We have also introduced a new set, named Kernel Set, that is a subset of the original data set, which is able to describe the original data set both in terms of data structure and of obtained results. Experimental results on real-world data sets demonstrate the superiority of ROSE, both in terms of some quantitative indices and outliers detected, over those obtained by various rough fuzzy clustering algorithms and by the state-of-the-art outlier detection methods. It is also demonstrated that the kernel set is able to detect the same outliers set but with less computational time.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.