System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Measurement and Analysis of an Internet Streaming Service to Mobile Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yao Liu ; Dept. of Comput. Sci., George Mason Univ., Fairfax, VA, USA ; Fei Li ; Lei Guo ; Bo Shen
more authors

Receiving Internet streaming services on various mobile devices is getting increasingly popular, and cloud platforms have also been gradually employed for delivering streaming services to mobile devices. While a number of studies have been conducted at the client side to understand and characterize Internet mobile streaming delivery, little is known about the server side, particularly for the recent cloud-based Internet mobile streaming delivery. In this work, we aim to investigate the Internet mobile streaming service at the server side. For this purpose, we have collected a 4-month server-side log on the cloud (with 1,002 TB delivered video traffic) from a top Internet mobile streaming service provider serving worldwide mobile users. Through trace analysis, we find that 1) a major challenge for providing Internet mobile streaming services is rooted from the mobile device hardware and software heterogeneity. In this workload, we find over 3,400 different hardware models with more than 100 different screen resolutions running 14 different mobile OS and three audio codecs and four video codecs. 2) To deal with the device heterogeneity, CPU-intensive transcoding is used on the cloud to customize the video to the appropriate versions at runtime for different devices. A video clip could be transcoded into more than 40 different versions to serve requests from different devices. 3) Compared to videos in traditional Internet streaming, mobile streaming videos are typically of much smaller size (a median of 1.68 MBytes) and shorter duration (a median of 2.7 minutes). Furthermore, the daily mobile user accesses are more skewed following a Zipf-like distribution but users' interests also quickly shift. Considering the huge demand of CPU cycles for online transcoding, we further examine server-side caching to reduce the total CPU cycle demand from the cloud. We show that a policy considering different versions of a video altogether outperforms other intuitive ones when the - ache size is limited.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )