By Topic

Fully distributed state estimation of smart grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yunxin Li ; NICTA

A large number of sensors, meters and intelligent electronic devices (IEDs) with the capabilities of sensing, actuation, computation and communication will be deployed in future smart power grids for the purpose of measurement, monitoring, protection, diagnosis, control, optimization and other transactions. The conventional centralized and hierarchical multi-level state estimation is not scalable enough to process the huge amount of data generated all over the grid. In this paper we propose a fully distributed computational network architecture and the associated Message-Passing (MP) algorithms for electric power system state estimation. Unlike the conventional state estimation schemes that centered around algebraic operations on sparse matrices, our approach is based on MP and information fusing on graphs in a totally distributed fashion. The optimality, scalability and other advantages will be demonstrated.

Published in:

2012 IEEE International Conference on Communications (ICC)

Date of Conference:

10-15 June 2012