By Topic

Bandwidth scheduling techniques in TDM-PON supporting inter-ONU communication with network coding for smart grid applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kubo, R. ; Dept. of Electron. & Electr. Eng., Keio Univ., Yokohama, Japan ; Tadokoro, M. ; Nomura, H. ; Ujikawa, H.
more authors

In next-generation passive optical networks (PONs), the traffic exchanged among optical network units (ONUs) belonging to the same PON, i.e. inter-ONU traffic, will increase because of emerging applications and services such as the smart grid. Applying network coding (NC) techniques to the inter-ONU traffic will improve throughput, security and reliability. However, the implementation of NC causes additional queuing delay at the optical line terminal (OLT), and degrades the fairness among coded and uncoded inter-ONU flows in terms of latency. This paper proposes a novel bandwidth scheduling technique, i.e. a grouped random scheduling (GRS) algorithm, to reduce the additional queuing delay at the OLT. In addition, a priority index (PI) is defined to further reduce the latency of coded inter-ONU flows, and an adaptive priority scheduling (APS) algorithm is proposed to improve latency fairness among coded and uncoded inter-ONU flows. The proposed techniques are validated by numerical analyses and simulations.

Published in:

Communications (ICC), 2012 IEEE International Conference on

Date of Conference:

10-15 June 2012