By Topic

Improving the DMT Performance for MIMO Communication With Linear Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ti-Wen Tang ; Department of Electrical Engineering, National Chiao Tung University, Hsinchu , Taiwan ; Min-Kun Chen ; Hsiao-Feng Lu

Multiple-input-multiple-output (MIMO) linear receivers are often of more practical interest than maximum-likelihood (ML) receivers due to their low decoding complexity but at the cost of worse diversity gain performance. Such a statement on performance loss is due to the assumption of using an independent identically distributed complex Gaussian vector as channel input. By removing this assumption, we find that the diversity performance of MIMO linear receivers can be significantly improved. In an extreme case, it can be the same as that of ML receivers. Specifically, in this paper, we investigate the diversity-multiplexing tradeoff (DMT) performance of MIMO linear receivers with colored and possibly degenerate Gaussian channel inputs. By varying the rank of the covariance matrix of the channel input vector and by allowing temporal coding across multiple channel uses, we show that the MIMO linear receiver can achieve a much better DMT performance than the currently known one. Explicit optimal code constructions are provided, along with simulation results, to justify the above findings. For the case of (2 × 2) and (3 × 3) MIMO linear receivers, simulation results show that the newly proposed codes provide significant gains of 10 and 12.08 dB in Eb/N0 at bit error rate 10-4 compared to the conventional schemes, respectively.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:62 ,  Issue: 3 )