By Topic

Surface-Tension-Driven Self-Assembly of 3-D Microcomponents by Using Laser Reflow Soldering and Wire Limiting Mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Yang ; Sch. of Mater. Sci. & Eng., Harbin Inst. of Technol., Harbin, China ; Wei Liu ; Chunqing Wang ; Yanhong Tian

This paper proposes a surface-tension-driven self-assembly method for manufacturing highly 3-D microstructures in microelectromechanical systems (MEMS). By using laser reflow soldering, various MEMS microstructures, even including the thermal-sensitive components, are able to be effectively assembled. Moreover, an energy-based numerical model is established for predicting the equilibrium geometry of a self-assembled structure. Based on the calculated results of energy and torque, an analysis is carried out on the factors affecting the self-assembled equilibrium position. In addition, the self-assembly process is also investigated experimentally by fabricating a popped-up microstructure with two light-emitting diodes die. Experimental studies, combined with the modeling results, have demonstrated that the self-assembly angle can be controlled within ±2.5°. Furthermore, in order to enhance the precision of self-assembly, a novel low-cost wire limiter structure fabricated by the wire bonding process is presented, which reduces the assembly angle variation down to ±0.5°.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:3 ,  Issue: 1 )