By Topic

Real-Time Blood Circulation and Bleeding Model for Surgical Training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Boisvert, J. ; Nat. Res. Council of Canada, Ottawa, ON, Canada ; Poirier, G. ; Borgeat, L. ; Godin, G.

Intraoperative management of bleeding is a critical skill all surgeons must possess. It is, however, very challenging to create a safe and realistic learning environment for its acquisition. In this paper, we propose a simple and efficient approach to integrate blood circulation to computerized surgical simulation systems and allow for real-time processing of punctures, ruptures, and cauterization of blood vessels. Blood pressures and flows are calculated using a system of ordinary differential equations, which can be simulated very efficiently. The equation system itself is constructed using a graph of the vessels' connectivity extracted from magnetic resonance angiograms (MRA) and completed with virtual vessels deduced from the principle of minimum work. Real-time performances of the method are assessed and results are demonstrated on ten patients who underwent a MRA before removal of a brain tumor.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 4 )