By Topic

Performance Evaluation of Conductive-Paper Dipole Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rouse, C.D. ; Dept. of Electr. & Comput. Eng., Univ. of New Brunswick, Fredericton, NB, Canada ; Kurz, M.R. ; Petersen, B.R. ; Colpitts, B.G.

The feasibility of electrically conductive paper as a low-cost and eco-friendly alternative to copper is presented for application as an antenna conductor in UHF radio-frequency identification (RFID) systems. The conductivity of the paper is determined to be 50 S/m and the effect of such a low conductivity on the radiation performance of a half-wavelength dipole is investigated through simulation and experimental measurements. The radiation efficiency of a dipole cut from a 0.4 mm thick conductive paper sheet is measured to be 5.0%, which translates to an RFID tag read range of 22% of that obtained using copper. This performance is deemed unacceptable for most antenna applications. However, through simulation a conductivity of 500 S/m is identified as a reasonable target for the developers of conductive paper as the current distribution and terminal properties of the resulting antenna become similar to those observed when using copper. The radiation efficiency is projected at 56 % in this case, resulting in an RFID read range of 73% of that obtained using copper.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 3 )