Cart (Loading....) | Create Account
Close category search window
 

Design of Protective Inductors for HVDC Transmission Line Within DC Grid Offshore Wind Farms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fujin Deng ; Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark ; Zhe Chen

This paper presents fault analysis and protective inductors design for an offshore wind farm, where the power collection system in the wind farm and the power transmission link to the grid adopt high-voltage direct-current (HVDC) technology. This paper focuses on dealing with short-circuit faults in the HVDC link between the offshore station and the onshore station. The transient characteristics of the transmission system are analyzed in detail. The criteria of selecting protective inductors are proposed to effectively limit the short-circuit current and avoid the damage to the converters. A dc grid offshore wind farm is simulated, and the results demonstrate the effectiveness of the proposed protective inductors design.

Published in:

Power Delivery, IEEE Transactions on  (Volume:28 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.