Cart (Loading....) | Create Account
Close category search window
 

Beyond Text QA: Multimedia Answer Generation by Harvesting Web Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liqiang Nie ; Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore ; Meng Wang ; Yue Gao ; Zheng-Jun Zha
more authors

Community question answering (cQA) services have gained popularity over the past years. It not only allows community members to post and answer questions but also enables general users to seek information from a comprehensive set of well-answered questions. However, existing cQA forums usually provide only textual answers, which are not informative enough for many questions. In this paper, we propose a scheme that is able to enrich textual answers in cQA with appropriate media data. Our scheme consists of three components: answer medium selection, query generation for multimedia search, and multimedia data selection and presentation. This approach automatically determines which type of media information should be added for a textual answer. It then automatically collects data from the web to enrich the answer. By processing a large set of QA pairs and adding them to a pool, our approach can enable a novel multimedia question answering (MMQA) approach as users can find multimedia answers by matching their questions with those in the pool. Different from a lot of MMQA research efforts that attempt to directly answer questions with image and video data, our approach is built based on community-contributed textual answers and thus it is able to deal with more complex questions. We have conducted extensive experiments on a multi-source QA dataset. The results demonstrate the effectiveness of our approach.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.