By Topic

Affective Labeling in a Content-Based Recommender System for Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tkalcic, M. ; Univ. of Ljubljana, Ljubljana, Slovenia ; Odic, A. ; Kosir, A. ; Tasic, J.

Affective labeling of multimedia content has proved to be useful in recommender systems. In this paper we present a methodology for the implicit acquisition of affective labels for images. It is based on an emotion detection technique that takes as input the video sequences of the users' facial expressions. It extracts Gabor low level features from the video frames and employs a k nearest neighbors machine learning technique to generate affective labels in the valence-arousal-dominance space. We performed a comparative study of the performance of a content-based recommender (CBR) system for images that uses three types of metadata to model the users and the items: (i) generic metadata, (ii) explicitly acquired affective labels and (iii) implicitly acquired affective labels with the proposed methodology. The results show that the CBR performs best when explicit labels are used. However, implicitly acquired labels yield a significantly better performance of the CBR than generic metadata while being an unobtrusive feedback tool.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 2 )