By Topic

Dynamics of MEMS Arches of Flexible Supports

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alkharabsheh, S.A. ; Dept. of Mech. Eng., State Univ. of New York, Binghamton, NY, USA ; Younis, M.I.

We present an investigation into the dynamics of microelectromechanical systems (MEMS) arches when actuated electrically including the effect of their flexible supports. Using a shallow-arch model with rotational and transversal springs at its boundaries, a reduced-order model is developed. Shooting technique is utilized to find periodic motions. The stability of the captured periodic motion is examined using the Floquet theory. Simulation results are shown for the forced-vibration response of an arch when excited by a dc electrostatic force superimposed to an ac harmonic load. The results show softening behavior and several jumps in the response during snap-through motion and pull-in. It is demonstrated that nonideal boundary conditions can have significant effect on the qualitative dynamical behavior of the MEMS arch. This may include lowering its natural frequencies from the expected range of operation and causing unpredictable snap through or dynamic pull-in. Simulation results are compared to experimental data obtained for an imperfect microfabricated clamped-clamped beam with initial curvature actuated electrically for the cases of primary and superharmonic resonances.

Published in:

Microelectromechanical Systems, Journal of  (Volume:22 ,  Issue: 1 )