Cart (Loading....) | Create Account
Close category search window

Improving Control of Dexterous Hand Prostheses Using Adaptive Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tommasi, T. ; Idiap Res. Inst., Martigny, Switzerland ; Orabona, F. ; Castellini, C. ; Caputo, B.

At the time of this writing, the main means of control for polyarticulated self-powered hand prostheses is surface electromyography (sEMG). In the clinical setting, data collected from two electrodes are used to guide the hand movements selecting among a finite number of postures. Machine learning has been applied in the past to the sEMG signal (not in the clinical setting) with interesting results, which provide more insight on how these data could be used to improve prosthetic functionality. Researchers have mainly concentrated so far on increasing the accuracy of sEMG classification and/or regression, but, in general, a finer control implies a longer training period. A desirable characteristic would be to shorten the time needed by a patient to learn how to use the prosthesis. To this aim, we propose here a general method to reuse past experience, in the form of models synthesized from previous subjects, to boost the adaptivity of the prosthesis. Extensive tests on databases recorded from healthy subjects in controlled and noncontrolled conditions reveal that the method significantly improves the results over the baseline nonadaptive case. This promising approach might be employed to pretrain a prosthesis before shipping it to a patient, leading to a shorter training phase.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.