By Topic

Dielectric-Band Photonic Crystal Nanobeam Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Po-Tsung Lee ; Department of Photonics and the Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan ; Tsan-Wen Lu ; Li-Hsun Chiu

We investigate a mode gap confined dielectric band laser via a 1-D photonic crystal (PhC) nanobeam (NB) nanocavity with lattice gradually shifted PhC mirror. Owing to different modal symmetries, different zeroth-order dielectric mode properties, including quality (Q) factors, mode volumes, lasing thresholds, and slope efficiencies, in nanocavities with two different cavity sizes are investigated. In experiments, single-mode lasing from dielectric bands with low effective lasing thresholds is obtained. Rising of the high-order modes is also observed when we increase the PhC mirror periods for high Q factor of the zeroth-order dielectric mode. In addition, we observe the bonding and antibonding modes in beamwidth mismatched coupled NB nanocavities and switch the dominant lasing mode via spatially nonuniform carrier injection.

Published in:

Journal of Lightwave Technology  (Volume:31 ,  Issue: 1 )