By Topic

Leveraging Social Networks for P2P Content-Based File Sharing in Disconnected MANETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kang Chen ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Haiying Shen ; Haibo Zhang

Current peer-to-peer (P2P) file sharing methods in mobile ad hoc networks (MANETs) can be classified into three groups: flooding-based, advertisement-based, and social contact-based. The first two groups of methods can easily have high overhead and low scalability. They are mainly developed for connected MANETs, in which end-to-end connectivity among nodes is ensured. The third group of methods adapts to the opportunistic nature of disconnected MANETs but fails to consider the social interests (i.e., contents) of mobile nodes, which can be exploited to improve the file searching efficiency. In this paper, we propose a P2P content-based file sharing system, namely SPOON, for disconnected MANETs. The system uses an interest extraction algorithm to derive a node's interests from its files for content-based file searching. For efficient file searching, SPOON groups common-interest nodes that frequently meet with each other as communities. It takes advantage of node mobility by designating stable nodes, which have the most frequent contact with community members, as community coordinators for intracommunity searching, and highly mobile nodes that visit other communities frequently as community ambassadors for intercommunity searching. An interest-oriented file searching scheme is proposed for high file searching efficiency. Additional strategies for file prefetching, querying-completion, and loop-prevention, and node churn consideration are discussed to further enhance the file searching efficiency. We first tested our system on the GENI Orbit testbed with a real trace and then conducted event-driven experiment with two real traces and NS2 simulation with simulated disconnected and connected MANET scenarios. The test results show that our system significantly lowers transmission cost and improves file searching success rate compared to current methods.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:13 ,  Issue: 2 )