By Topic

Scalable Analysis of Movement Data for Extracting and Exploring Significant Places

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gennady Andrienko ; Fraunhofer Institute , Sankt Augustin Sankt Augustin ; Natalia Andrienko ; Christophe Hurter ; Salvatore Rinzivillo
more authors

Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: 1) event extraction from trajectories; 2) extraction of relevant places based on event clustering; 3) spatiotemporal aggregation of events or trajectories; 4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large data sets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:19 ,  Issue: 7 )