By Topic

Secondary-electrons-induced cathode plasma in a relativistic magnetron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Queller, T. ; Physics Department, Technion, Haifa 32000, Israel ; Gleizer, J.Z. ; Krasik, Ya.E.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Results of time- and space-resolved spectroscopic studies of cathode plasma during a S-band relativistic magnetron operation and a magnetically insulated diode having an identical interelectrode gap are presented. It was shown that in the case of the magnetron operation, one obtains an earlier, more uniform plasma formation due to energetic electrons' interaction with the cathode surface and ionization of desorbed surface monolayers. No differences were detected in the cathode's plasma temperature between the magnetron and the magnetically insulated diode operation, and no anomalous fast cathode plasma expansion was observed in the magnetron at rf power up to 350 MW.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 21 )