Cart (Loading....) | Create Account
Close category search window
 

Dynamic data mining approach to WMRHM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patil, D.D. ; Dept. Comput. Eng., MAEER''s MITCOE, Pune, India ; Wadhai, V.M.

Developments in sensors, miniaturization of low-power microelectronics, and wireless networks are becoming a significant opportunity for improving the quality of health care services. Since the population is growing, the need for high quality and efficient healthcare, both at home and in hospital, is becoming more important. This paper presents the innovative wireless sensor network based Mobile Real-time Health care Monitoring (WMRHM) framework which has the capacity of giving health predictions online based on continuously monitored real time vital body signals. Our approach focused towards handling all kinds of vital signals like ECG, EMG, SpO2 etc. which previous work was not supporting. While predictions the framework considers all parameters like patient history, domain expert's rules and continuously monitored real-time signals. Implementation and results of applying clustering algorithms (Graph theoretic, K-means) on patient's historical health data for forming the health rule base are discussed here. The framework has been designed to perform the analysis on the instantaneous and stream (continuous) data over a sliding time window which applies dynamic data mining on the live data. The comparative analysis on vital signals made from various clustering algorithms adds extra dimension to global risk alerts and help doctors to diagnose more accurately.

Published in:

Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference on

Date of Conference:

18-20 July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.